2,161 research outputs found

    The Growth Of Highly Doped p-GaN On Sapphire By RF Plasma-Assisted Molecular Beam Epitaxy.

    Get PDF
    In this paper, we present the study of the electrical, structural and optical properties of p-type GaN grown on sapphire by RF plasma-assisted molecular beam epitaxy (RF-MBE)

    Effects Of Thermal Annealing Of Pt Schottky Contacts On n-GaN.

    Get PDF
    In this paper, the Schottky behavior of Pt contact on n- GaN grown by RF-plasma assisted molecular beam epitaxy was investigated under different annealing temperatures

    Statistical evaluation of on-road vehicle emissions measurement using a dual remote sensing technique.

    Full text link
    On-road remote sensing (RS) is a rapid, non-intrusive and economical tool to monitor and control the emissions of in-use vehicles, and currently is gaining popularity globally. However, a majority of studies used a single RS technique, which may bias the measurements since RS only captures a snapshot of vehicle emissions. This study aimed to use a unique dual RS technique to assess the characteristics of on-road vehicle emissions. The results show that instantaneous vehicle emissions are highly dynamic under real-world driving conditions. The two emission factors measured by the dual RS technique show little correlation, even under the same driving condition. This indicates that using the single RS technique may be insufficient to accurately represent the emission level of a vehicle based on one measurement. To increase the accuracy of identifying high-emitting vehicles, using the dual RS technique is essential. Despite little correlation, the dual RS technique measures the same average emission factors as the single RS technique does when a large number of measurements are available. Statistical analysis shows that both RS systems demonstrate the same Gamma distribution with ≥200 measurements, leading to converged mean emission factors for a given vehicle group. These findings point to the need for a minimum sample size of 200 RS measurements in order to generate reliable emission factors for on-road vehicles. In summary, this study suggests that using the single or dual RS technique will depend on the purpose of applications. Both techniques have the same accuracy in calculating average emission factors when sufficient measurements are available, while the dual RS technique is more accurate in identifying high-emitters based on one measurement only

    The Caltech Core-Collapse Project (CCCP)

    Get PDF
    The cosmological utility of type Ia Supernovae prompted numerous studies of these events, and they are now well characterized observationally, both as individual objects and as a population. In contrast, all other types of supernovae (i.e. core-collapse events) are not as well observationally characterized. While some individual events have been studied in great detail (e.g. SN 1987A or SN 1998bw), the global properties of the core-collapse SN population are little known. However, in recent years, major drivers for change have emerged, among them the verification of the connection between core-collapse supernovae and long-duration Gamma-Ray Bursts (GRBs), the possible utility of some core-collapse supernovae (type II-P) as independent cosmological probes, and studies of core-collapse supernovae as high redshift targets for missions like the Supernova Acceleration Probe and the James Webb Space Telescope. The Caltech Core-Collapse Project is a large observational program using the Hale 200 inch and the robotic 60 inch telescopes at Palomar observatory to obtain optical photometry, spectroscopy and IR photometry of ~50 nearby core-collapse supernovae. The program is designed to provide a complete sample of core-collapse events, with well-defined selection criteria and uniform, high-quality optical/IR observations, as well as radio and X-ray light curves for some events. We will use this sample to characterize the little-studied properties of core-collapse supernovae as a population. The sample will be used as a comparison set for studies of supernovae associated with Gamma-Ray Bursts, to promote and calibrate the use of supernovae II-P for cosmography, and to set the stage for investigations of supernovae at high-z using coming space missions such as the Supernova Acceleration Probe and the James Webb Space Telescope

    Rapid detection of high-emitting vehicles by on-road remote sensing technology improves urban air quality.

    Full text link
    Vehicle emissions are the most important source of air pollution in the urban environment worldwide, and their detection and control are critical for protecting public health. Here, we report the use of on-road remote sensing (RS) technology for fast, accurate, and cost-effective identification of high-emitting vehicles as an enforcement program for improving urban air quality. Using large emission datasets from chassis dynamometer testing, RS, and air quality monitoring, we found that significant percentages of in-use petrol and LPG vehicles failed the emission standards, particularly the high-mileage fleets. The RS enforcement program greatly cleaned these fleets, in terms of high-emitter percentages, fleet average emissions, roadside and ambient pollutant concentrations, and emission inventory. The challenges of the current enforcement program are conservative setting of cut points, single-lane measurement sites, and lack of application experience in diesel vehicles. Developing more accurate and vertical RS systems will improve and extend their applications

    Detection of circumstellar material in a normal Type Ia Supernova

    Get PDF
    Type Ia supernovae are thought to be thermonuclear explosions of accreting white dwarfs that reach a critical mass limit. Despite their importance as cosmological distance indicators, the nature of their progenitors has remained controversial. Here we report the detection of circumstellar material in a normal Type Ia supernova. The expansion velocities, densities and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. The relatively low expansion velocities appear to favor a progenitor system where a white dwarf accretes material from a companion star which is in the red-giant phase at the time of explosion.Comment: 25 pages, 7 figures. Accepted for publication in Science. Full resolution version at http://www.hq.eso.org/~fpatat/science/sn06X/preprint.pdf . The original paper can be found at http://www.sciencemag.org/cgi/content/abstract/114300

    Molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates from Shanghai, China

    Get PDF
    China is one of the countries with the highest prevalence of fluoroquinolone-resistant (FQ r) Mycobacterium tuberculosis. Nevertheless, knowledge on the molecular characterization of the FQ r M. tuberculosis strains of this region remains very limited. This study was performed to investigate the frequencies and types of mutations present in FQ r M. tuberculosis clinical isolates collected in Shanghai, China. A total of 206 FQ r M. tuberculosis strains and 21 ofloxacin-sensitive (FQ s) M. tuberculosis strains were isolated from patients with pulmonary tuberculosis in Shanghai. The phenotypic drug susceptibilities were determined by the proportion method, and the mutations inside quinolone resistance-determining region (QRDR) of gyrA and gyrB genes were identified by DNA sequence analyses. Among 206 FQ r M. tuberculosis strains, 44% (90/206) were multidrug-resistant isolates and 39% (81/206) were extensively drug-resistant isolates. Only 9% (19/206) were monoresistant to ofloxacin. In total, 79.1% (163/206) of FQ r isolates harboured mutations in either gyrA or gyrB QRDR. Mutations in gyrA QRDR were found in 75.7% (156/206) of FQ r clinical isolates. Among those gyrA mutants, a majority (75.6%) harboured mutations at amino acid position 94, with D94G being the most frequent amino acid substitution. Mutations in gyrA QRDR showed 100% positive predictive value for FQ r M. tuberculosis in China. Mutations in gyrB were observed in 15.5% (32/206) of FQ r clinical isolates. Ten novel mutations were identified in gyrB. However, most of them also harboured mutations in gyrA, limiting their contribution to FQ r resistance in M. tuberculosis. Our findings indicated that, similar to other geographic regions, mutations in gyrA were shown to be the major mechanism of FQ r resistance in M. tuberculosis isolates. The mutations in gyrA QRDR can be a good molecular surrogate marker for detecting FQ r M. tuberculosis in China. © 2012 Elsevier Inc.postprin

    The progenitor and early evolution of the Type IIb SN 2016gkg

    Get PDF
    We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the \he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {\it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkg's position, suggesting a progenitor star with a \simmid F spectral type and initial mass 152015-20\msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within 5days5\,\rm{days} of explosion, we obtain a progenitor radius of 48124\sim\,48-124\rsun, smaller than that obtained from the analysis of the pre-explosion images (240320240-320\rsun).Comment: 7 pages, 5 figures. Submitted to ApJ Letter
    corecore